SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "swepub ;pers:(Ottersten Björn 1961);lar1:(kth);pers:(Chatzinotas Symeon)"

Sökning: swepub > Ottersten Björn 1961 > Kungliga Tekniska Högskolan > Chatzinotas Symeon

  • Resultat 1-10 av 82
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lei, Lei, et al. (författare)
  • Load Coupling and Energy Optimization in Multi-Cell and Multi-Carrier NOMA Networks
  • 2019
  • Ingår i: IEEE Transactions on Vehicular Technology. - : Institute of Electrical and Electronics Engineers (IEEE). - 0018-9545 .- 1939-9359. ; 68:11, s. 11323-11337
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we investigate energy optimization in multi-cell and multi-carrier non-orthogonal multiple access (NOMA) networks. We apply a load-coupling model for NOMA networks to capture the coupling relation of mutual interference among cells. With this analytical tool, we formulate an energy minimization problem in a NOMA-based load-coupled system, where optimizing load-rate-power allocation, and determining decoding order and user grouping are the key aspects. Theoretically, we prove that the minimum consumed energy can be achieved by using all the time-frequency resources in each cell to deliver users' demand, and allowing all the users to share resource units. From a practical perspective, we consider three types of NOMA grouping schemes, i.e., all-user grouping, partitioned and non-partitioned grouping. We develop tailored solutions for each grouping scheme to enable efficient load-rate-power optimization. These three algorithmic components are embedded into a power-adjustment framework to provide energy-efficient solutions for NOMA networks. Numerical results demonstrate promising energy-saving gains of NOMA over orthogonal multiple access in large-scale cellular networks, in particular for high-demand and resource-limited scenarios. The results also show fast convergence of the proposed algorithms and demonstrate the effectiveness of the solutions.
  •  
2.
  • Tsinos, Christos G., et al. (författare)
  • Symbol-Level Precoding with Low Resolution DACs for Large-Scale Array MU-MIMO Systems
  • 2018
  • Ingår i: 2018 IEEE 19TH INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (SPAWC). - : IEEE. - 9781538635124 ; , s. 671-675
  • Konferensbidrag (refereegranskat)abstract
    • While (Multiple Input-Multiple Output) MIMO systems based on large-scale antenna arrays are seen as the solution to the continuously increasing demands in modern wireless systems, they require high hardware complexity and power consumption. To tackle this, solutions based on low resolution Analog-to-Digital Converters (ADCs) / Digital-to-Analog Converters (DACs) have been developed in the literature where they mainly propose quantized versions of typical channel dependent linear precoding solutions. Alternatively, nonlinear Symbol level Precoding techniques have been recently proposed for downlink Multi User (MU)-MIMO systems with low resolution DACs that achieve significantly improved performance in several cases. The existing SLP approaches support only DACs of 1-bit resolution which result in significant performance degradations, especially when constellations with order greater than 4 are employed. To that end, in this work a novel SLP approach is developed that supports systems with DACs of any resolution and it is applicable for any type of constellation. As it is verified by the presented numerical results, the proposed approach exhibits significantly improved performance when constellations with order greater than 4 are employed and require reduced computational complexity, compared to the existing solutions for the 1-bit DAC case.
  •  
3.
  • You, Lei, et al. (författare)
  • Power and Load Optimization in Interference-Coupled Non-Orthogonal Multiple Access Networks
  • 2018
  • Ingår i: 2018 IEEE Global Communications Conference (GLOBECOM). - : IEEE. - 9781538647271
  • Konferensbidrag (refereegranskat)abstract
    • Towards energy savings in large-scale non-orthogonal multiple access (NOMA) networks, we investigate power and load optimization for multi-cell and multi-carrier NOMA systems in this paper. To capture the coupling relation of mutual interference among cells, firstly, we extend a load-coupling model from orthogonal multiple access (OMA) to NOMA networks. Next, with this analytical tool, we formulate the considered optimization problem in NOMA-based load-coupled systems, where optimizing load, power, and determining decoding order are the key aspects in the optimization. Theoretically, we prove that the minimum network energy consumption can be achieved by using all the time-frequency resources in each cell to deliver users' demand. To achieve the optimal load and enable efficient power optimization, we develop a power-adjustment algorithm. Numerical results demonstrate promising energy-saving gains of NOMA over OMA in large-scale cellular networks, in particular for the high-demand and resource-limited scenarios.
  •  
4.
  • Christopoulos, Dimitrios, et al. (författare)
  • Capacity Analysis of Multibeam Joint Decoding over Composite Satellite Channels
  • 2011
  • Ingår i: Proc. of the 45th Asilomar Conference on Signals, Systems and Computer. - : IEEE Signal Processing Society. - 1058-6393. - 9781467303231
  • Konferensbidrag (refereegranskat)abstract
    • The throughput of current multibeam satellite systemsis limited by self interference. Interference mitigationtechniques have the potential to significantly increase the spectralefficiency of these satellite communication systems. The presentcontribution investigates the ergodic capacity of the return linkof a multibeam satellite system, where full frequency reuse is employedand user signals are jointly processed at the gateway. Theproposed model incorporates correlated satellite antennas overRician channels which represent some inherent characteristics ofsatellite communications. Additionally, the effects of shadowingcaused by user mobility, are modeled via the lognormal distribution.Hence, a composite Rician/lognormal fading channel withfully correlated receive antennas is considered. For this channel, anew lower bound on the ergodic capacity is analytically deducedand verified through simulations.
  •  
5.
  • Abdu, Tedros Salih, et al. (författare)
  • Demand and Interference Aware Adaptive Resource Management for High Throughput GEO Satellite Systems
  • 2022
  • Ingår i: IEEE Open Journal of the Communications Society. - : Institute of Electrical and Electronics Engineers (IEEE). - 2644-125X. ; 3, s. 759-775
  • Tidskriftsartikel (refereegranskat)abstract
    • The scarce spectrum and power resources, the inter-beam interference, together with the high traffic demand, pose new major challenges for the next generation of Very High Throughput Satellite (VHTS) systems. Accordingly, future satellites are expected to employ advanced resource/interference management techniques to achieve high system spectrum efficiency and low power consumption while ensuring user demand satisfaction. This paper proposes a novel demand and interference aware adaptive resource management for geostationary (GEO) VHTS systems. For this, we formulate a multi-objective optimization problem to minimize the total transmit power consumption and system bandwidth usage while matching the offered capacity with the demand per beam. In this context, we consider resource management for a system with full-precoding, i.e., all beams are precoded; without precoding, i.e., no precoding is applied to any beam; and with partial precoding, i.e., only some beams are precoded. The nature of the problem is non-convex and we solve it by jointly using the Dinkelbach and Successive Convex Approximation (SCA) methods. The simulation results show that the proposed method outperforms the benchmark schemes. Specifically, we show that the proposed method requires low resource consumption, low computational time, and simultaneously achieves a high demand satisfaction.
  •  
6.
  • Abdu, Tedros Salih, et al. (författare)
  • Demand-Aware Onboard Payload Processor Management for High Throughput NGSO Satellite Systems
  • 2023
  • Ingår i: IEEE Transactions on Aerospace and Electronic Systems. - : Institute of Electrical and Electronics Engineers (IEEE). - 0018-9251. ; , s. 1-18
  • Tidskriftsartikel (refereegranskat)abstract
    • High-Throughput Satellite (HTS) systems with digital payload technology have been identified as a key enabler to support 5G/6G high-data connectivity with wider coverage area. The satellite community has extensively explored resource allocation methods to achieve this target. Typically, these methods do not consider the intrinsic architecture of the flexible satellite digital payload, which consists of multiple processors responsible for receiving, processing, and transmitting the signals. This paper presents a demand-aware onboard processor management scheme for broadband Non-Geostationary (NGSO) satellites. In this context, we formulate an optimization problem to minimize the number of active on-board processors while meeting the system constraints and user requirements. As the problem is non-convex, we solve it in two steps. First, we transform the problem into demand-driven bandwidth allocation while fixing the number of processors. Second, using the bandwidth allocation solution, we determine the required number of processors with two methods: 1) sequential optimization with the Branch & Bound method and 2) Bin Packing with Next Fit, First Fit, and Best Fit methods. Finally, we demonstrate the proposed methods with extensive numerical results. It is shown that the Branch & Bound, Best Fit, and First Fit methods manage the processors better than the Next Fit method. Furthermore, Branch & Bound requires fewer processors than the above methods.
  •  
7.
  • Abdullah, Zaid, et al. (författare)
  • Cooperative Hybrid Networks with Active Relays and RISs for B5G : Applications, Challenges, and Research Directions
  • 2022
  • Ingår i: IEEE Wireless Communications. - : Institute of Electrical and Electronics Engineers (IEEE). - 1536-1284. ; , s. 1-7
  • Tidskriftsartikel (refereegranskat)abstract
    • Among the recent advances and innovations in wireless technologies, reconfigurable intelligent surfaces (RISs) have received much attention and are envisioned to be one of the enabling technologies for beyond 5G (B5G) networks. On the other hand, active (or classical) cooperative relays have played a key role in providing reliable and power-efficient communications in previous wireless generations. In this article, we focus on hybrid network architectures that amalgamate both active relays and RISs. The operation concept and protocols of each technology are first discussed. Subsequently, we present multiple use cases of cooperative hybrid networks where both active relays and RISs can coexist harmoniously for enhanced rate performance. Furthermore, a case study is provided which demonstrates the achievable rate performance of a communication network assisted by either an active relay, an RIS, or both, and with different relaying protocols. Finally, we provide the reader with the challenges and key research directions in this area.
  •  
8.
  •  
9.
  •  
10.
  • Al-Hraishawi, Hayder, et al. (författare)
  • Energy Harvesting from Jamming Attacks in Multi-User Massive MIMO Networks
  • 2023
  • Ingår i: IEEE Transactions on Green Communications and Networking. - : Institute of Electrical and Electronics Engineers (IEEE). - 2473-2400. ; 7:3, s. 1181-1191
  • Tidskriftsartikel (refereegranskat)abstract
    • Fifth-generation (5G) and beyond communication systems offer new functionalities and significant performance improvements but that comes at the cost of tougher energy requirements on user devices. Addressing this issue while reducing the environmental impact of the substantial increase in energy consumption can be achieved through energy-neutral systems that operate using energy harvested from radio frequency (RF) transmissions. In this direction, this work examines the concept of utilizing an unconventional source for RF energy harvesting. Specifically, the performance of an RF energy harvesting scheme for multi-user massive multiple-input multiple-output (MIMO) is investigated in the presence of multiple active jammers. The key idea is to exploit the jamming transmissions as an energy source to be harvested by the legitimate users. To this end, the feasibility of this concept is studied via system performance analysis for a training-based massive MIMO encompasses imperfectly estimated channel state information (CSI) at the base-station and employing the time-switching protocol. In particular, the achievable uplink sum rate expressions are derived in closed-form for two different antenna configurations at the base-station. Two optimal time-switching schemes are also proposed based on maximum sum rate and user-fairness criteria. The essential trade-off between the harvested energy and achievable sum rate in time-switching protocol are quantified in closed-form as well. Our analysis reveals that the proposed energy harvesting scheme from jamming signals is viable and can boost massive MIMO uplink performance by exploiting the surrounding RF signals of the jamming attacks for increasing the amount of harvested energy at the served users. Finally, numerical results validate the theoretical analyses and the effectiveness of the derived closed-form expressions through simulations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 82

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy